Math 102

Krishanu Sankar

November 27, 2018

Announcements

- Review sessions on Thursday and Friday 4-7PM, in SWNG 122.
- A \& D - deadline to register is today!

Goals Today

- Inverse Trigonometric Functions
- Review
- Derivatives
- Applications
- Related Rates
- Optimization

Recall $-\arcsin (x), \arccos (x), \arctan (x)$

$\cos (\arcsin (x))$

Question: Calculate $\cos \left(\arcsin \left(\frac{1}{3}\right)\right)$. Can you find a general expression for $\cos (\arcsin (x))$?

$\cos (\arcsin (x))$

Question: Calculate $\cos \left(\arcsin \left(\frac{1}{3}\right)\right)$. Can you find a general expression for $\cos (\arcsin (x))$?

$$
\cos (\arcsin (x))=\sqrt{1-x^{2}}
$$

Therefore,
$\cos (\arcsin (1 / 3))=\sqrt{1-\frac{1}{9}}$

$$
=\frac{2 \sqrt{2}}{3}
$$

Derivative of $\arcsin (x)$

$$
y=\arcsin (x) \quad \Longrightarrow \quad \sin (y)=x
$$

Derivative of $\arcsin (x)$

$$
\begin{gathered}
y=\arcsin (x) \quad \Longrightarrow \quad \sin (y)=x \\
\Longrightarrow \frac{d \sin (y)}{d y}=\frac{d x}{d y} \quad \Longrightarrow \quad \cos (y)=\frac{d x}{d y}
\end{gathered}
$$

Derivative of $\arcsin (x)$

$$
\begin{gathered}
y=\arcsin (x) \quad \Longrightarrow \quad \sin (y)=x \\
\Longrightarrow \frac{d \sin (y)}{d y}=\frac{d x}{d y} \quad \Longrightarrow \quad \cos (y)=\frac{d x}{d y} \\
\Longrightarrow \frac{d y}{d x}=\frac{1}{\cos (y)}=\frac{1}{\cos (\arcsin (x))}=\frac{1}{\sqrt{1-x^{2}}}
\end{gathered}
$$

using the fact that $\cos (\arcsin (x))=\sqrt{1-x^{2}}$.

Derivative of $\arcsin (x)$ - another way

$$
\begin{gathered}
y=\arcsin (x) \quad \Longrightarrow \quad \sin (y)=x \\
\Longrightarrow \frac{d \sin (y)}{d x}=1 \quad \Longrightarrow \quad \cos (y) \frac{d y}{d x}=1 \\
\Longrightarrow \frac{d y}{d x}=\frac{1}{\cos (y)}=\frac{1}{\cos (\arcsin (x))}=\frac{1}{\sqrt{1-x^{2}}}
\end{gathered}
$$

using the fact that $\cos (\arcsin (x))=\sqrt{1-x^{2}}$.

Exercise: Calculate $\frac{d}{d x}(\arccos (x))$. Start by letting $y=\arccos (x)$, converting this to $\cos (y)=x$ and then taking $\frac{d}{d y}$ of both sides.

Exercise: Calculate $\frac{d}{d x}(\arccos (x))$. Start by letting $y=\arccos (x)$, converting this to $\cos (y)=x$ and then taking $\frac{d}{d y}$ of both sides.

$$
\begin{gathered}
y=\arccos (x) \quad \Longrightarrow \quad \cos (y)=x \\
\Longrightarrow \frac{d \cos (y)}{d y}=\frac{d x}{d y} \quad \Longrightarrow \quad-\sin (y)=\frac{d x}{d y} \\
\Longrightarrow \frac{d y}{d x}=-\frac{1}{\sin (\arccos (x))} \\
=-\frac{1}{\sqrt{1-x^{2}}}
\end{gathered}
$$

Derivative of $\arctan (x)$

$$
y=\arctan (x) \quad \Longrightarrow \quad \tan (y)=x
$$

Derivative of $\arctan (x)$

$$
\begin{gathered}
y=\arctan (x) \quad \Longrightarrow \quad \tan (y)=x \\
\Longrightarrow \frac{d \tan (y)}{d y}=\frac{d x}{d y} \quad \Longrightarrow \frac{1}{\cos ^{2}}(y)=\sec ^{2}(y)=\frac{d x}{d y}
\end{gathered}
$$

Derivative of $\arctan (x)$

$$
\begin{gathered}
y=\arctan (x) \Longrightarrow \frac{\tan (y)=x}{d y}=\frac{d \tan (y)}{d y} \Longrightarrow \frac{1}{\cos ^{2}}(y)=\sec ^{2}(y)=\frac{d x}{d y} \\
\Longrightarrow \frac{d y}{d x}=\cos ^{2}(y)=\cos ^{2}(\arctan (x))=\frac{1}{1+x^{2}}
\end{gathered}
$$

Exercise: Sketch the derivatives!

$y=\arccos (x)$

$$
y=\arcsin (x)
$$

Exercise: Sketch the derivatives!

$$
y=\arccos (x)
$$

$$
y=-\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\begin{gathered}
y=\arctan (\\
y=\frac{1}{1+x^{2}}
\end{gathered}
$$

Viewing Angle

Question: A building is 100 m tall. You walk away from it at a constant speed of $1 \mathrm{~m} / \mathrm{s}$. The viewing angle is the angle formed between your line of sight to the top and your line of sight to the bottom (assume for simplicity that you are 0 m tall). When you are a distance of x away from the base, how quickly is the viewing angle, θ, changing?

Viewing Angle - Solution

$\tan (\theta)=100 / x \quad \Longrightarrow \quad \theta=\arctan (100 / x)$

$$
\Longrightarrow \frac{d \theta}{d t}=\frac{1}{1+(100 / x)^{2}}\left(-\frac{100}{x^{2}}\right) \frac{d x}{d t}
$$

Since $\frac{d x}{d t}=1$, we can simplify the above expression to get $\frac{d \theta}{d t}=-\frac{100}{x^{2}+100^{2}}$.

Viewing Angle - Alternate Solution

You can calculate from the diagram that
$\cos ^{2}(\theta)=\frac{x^{2}}{x^{2}+100^{2}}$. Since $\frac{d x}{d t}=1$, we can simplify the above expression to get $\frac{d \theta}{d t}=-\frac{100}{x^{2}+100^{2}}$.

Question: The base of a ladder of length L is pulled away from the wall at a constant rate of $0.5 \mathrm{~m} / \mathrm{s}$. In terms of x, how quickly is the angle θ changing?
Question: A billboard has

height 10 m and its bottom is at height 30 m . At what distance x from the billboard will you get the largest viewing angle, θ ?

Slipping Ladder - Solution $\theta=\arccos \left(\frac{x}{L}\right)$

$$
\begin{gathered}
\frac{d \theta}{d t}=\frac{d}{d t} \arccos \left(\frac{x}{L}\right) \\
=-\frac{1}{\sqrt{1-(x / L)^{2}}} \frac{d(x / L)}{d t} \\
=-\frac{1}{L \sqrt{1-(x / L)^{2}}} \frac{d x}{d t} \\
=-\frac{0.5}{\sqrt{L^{2}-x^{2}}}
\end{gathered}
$$

Billboard - Solution

The angle θ is given by
$\theta=\arctan \left(\frac{30}{x}\right)-\arctan \left(\frac{40}{x}\right)$

Billboard - Solution

The angle θ is given by

$$
\theta=\arctan \left(\frac{30}{x}\right)-\arctan \left(\frac{40}{x}\right)
$$

$$
\begin{gathered}
\frac{d \theta}{d x}=\frac{1}{1+(30 / x)^{2}}\left(-\frac{30}{x^{2}}\right)-\frac{1}{1+(40 / x)^{2}}\left(-\frac{40}{x^{2}}\right) \\
=-\frac{30}{x^{2}+30^{2}}+\frac{40}{x^{2}+40^{2}}
\end{gathered}
$$

Billboard - Solution

The angle θ is given by
$\theta=\arctan \left(\frac{40}{x}\right)-\arctan \left(\frac{30}{x}\right)$

$$
\frac{d \theta}{d x}=-\frac{40}{x^{2}+40^{2}}+\frac{30}{x^{2}+30^{2}}
$$

Set this equal to zero to find the critical point.
$\frac{30}{x^{2}+30^{2}}=\frac{40}{x^{2}+40^{2}}$

$$
\begin{gathered}
\Longrightarrow 30 x^{2}+30\left(40^{2}\right)=40 x^{2}+40\left(30^{2}\right) \\
\Longrightarrow x=\sqrt{1200}=20 \sqrt{3}
\end{gathered}
$$

